
24 The Delphi Magazine Issue 59

Application Architecture
by Max Rahder

This article discusses applica-
tion architecture using a

sample application based on the
DBDEMOS database that ships with
Delphi.

The companion disk contains
two versions of the sample applica-
tion: one for the initial implementa-
tion and one that reflects the
enhancements added by the end of
the article. Note that the applica-
tion uses frames; as a result, the
code will only compile under
Delphi 5 and later versions.

Introduction
An application architecture is an
infrastructure of classes that
makes it easier to extend and
modify a program. When creating
an architecture the designer deter-
mines core functionality then
creates classes that meet that
functionality. Programmers then
implement the application by
extending classes and implement-
ing key methods. The architecture
uses the information provided by
those methods to make things
work. The result is dramatically
reduced development and mainte-
nance costs.

There are a number of benefits of
having an architecture. Complex-
ity and functionality is encapsu-
lated in abstract classes: this
simplifies the programming tasks
of each developer, thus raising pro-
ductivity and lowering the amount
of code needed to be implemented.
Changes to the core classes also
affect the entire application,
reducing development and mainte-
nance costs. Application behavior
is consistent, which makes it easier
to use, reduces end-user training
and raises end-user productivity.

The architecture I will describe
in this article is primarily designed
to facilitate discussion of con-
cepts: it is not intended to be a
turnkey solution. I have intention-
ally omitted a few important
features in order to simplify the
discussion.

Before reading this article you
may want to review Guy
Smith-Ferrier’s article Visual Form
Inheritance and Frames: Friend or
Foe from the April 2000 issue. You
may also want to review the discus-
sion of class methods and overrid-
ing methods in the Delphi 5 help
topic Object oriented programming
for component writers.

Description
The sample application is a
customer order system which uses
the DBDEMOS Paradox database
included with Delphi.

For the first part of the article the
application references two tables
from DBDEMOS: customer.db and
orders.db. At the end of the article
I’ll add the employee.db table. The
relationship between the tables is
simple: There are customers, each
of whom have from zero to many
orders. Each order is taken by an
employee.

If you compile and run the
sample from the companion disk
you’ll see that the user initially
sees a main form containing a
toolbar and a main menu. From the
main form the user selects either
the customer or orders list. From
the list the user can open a detail
form used to view or edit customer
or order data.
The user
interacts with
four key types
of forms and
controls: the

main form, list forms (which con-
tain a frame-based DBGrid grid
showing result-set data), detail
forms (used to view and edit
detailed information) and frame-
based DBGrids (which show a list of
data and allow the user to go to the
detail form for a selected record).

Initially, the application allows
selecting and editing of customer
and order data from the cus-
tomer.db and orders.db tables.
Figure 2 shows the user’s flow of
control and the some of the key
user interface objects that exist at
runtime. Later in the article I’ll
extend the application to allow
selecting and editing of employee
data.

Note that lists and the customer
entity form contain frames. The
application includes a frame class
that displays result-set data and
allows the user to open a detail
form for the selected record. Use
of frames facilitates reuse. For
example, both the customer list
form and the customer entity form
contain an order result-set frame.
This means the TFrameResultSet
functionality to open an entity
form is available from both places.

customercustomer.db.db orders.dborders.db employee.dbemployee.db

TFormMainTFormMain

TFrameResultSetCustomerTFrameResultSetCustomer TFrameResultSetOrdersTFrameResultSetOrders

TFrameResultSetOrdersTFrameResultSetOrders

TFormListCustomerTFormListCustomer

TFormListOrdersTFormListOrders

TFormEntityCustomerTFormEntityCustomer

TFormEntityOrdersTFormEntityOrders

➤ Figure 2: Runtime objects and the user’s flow of control.

➤ Figure 1: The sample
application data model.

July 2000 The Delphi Magazine 25

Our forms sub-class from the
common ancestor TFormBase,
objects sub-class from TObject-
Base, and frames sub-class from
TFrameResultSetBase.

Entity forms provide the user
interface for editing a specific busi-
ness entity, which in this case
means editing a customer or an
order. Each entity form has a
corresponding entity object; it’s
the entity object that interacts
with the database via TQuery
components. For example, a
TFormEntityCustomer form has a ref-
erence to a TObjectEntityCustomer,
the form is the user interface for
viewing and manipulating the data
provided by the object.

The application also features
‘result set frames’, which are
frames containing database grids
used to show a result set. These
frames also have a corresponding
object: TFrameResultSetCustomer is
the view for data encapsulated in
TObjecdtResultSetCustomer, and
TFrameResultSetOrders is the view
for TObjectResultSetOrders.

Key Features
The key features of the architec-
ture are separation of business
objects from the user interface, use
of class methods to manage form
and object instances, form inheri-
tance, object inheritance and
frames. These features are
discussed below.

Separation of business objects
from the user interface is the
‘model-view’ approach to applica-
tion design. The benefits of the
model-view approach are well doc-
umented in the object oriented lit-
erature but, in a nutshell, it reflects
the fact that a user interface is
more arbitrary than the functional-
ity needed by a business object.
Separating them makes the code
more de-coupled, which makes
modifications and maintenance
easier.

The architecture uses two class
methods to manage form and
object instances. These methods
use object class type and a key
value to identify an object, and
ensure that only a single instance
of an object exists.

Form inheritance is used to
reuse user-interface functionality.
Many developers use form inheri-
tance to introduce methods, and
not so much to inherit controls.
This is because it can be difficult to
modify or extend controls, espe-
cially containers, placed on an
ancestor form. For example,
assume you have a panel on an
ancestor form. If sub-classing
forms have components on the
panel, and you decide to change
the ancestor panel to a group box,
you’ve got a problem.

The architecture works by
having the programmer implement
key methods that provide
information used by ancestor
classes. For example, ancestor
methods contain the code that
creates a form’s associated
entity object by running a

programmer-supplied method
specifying the object’s class.

TDataModule is the base class for
business objects. Like our use of
form inheritance, we’ll put func-
tionality in the ancestor and have
the programmer implement key
methods.

The benefit of sub-classing
TDataModule over TObject is that
the programmer can use Delphi
non-visual components, such as
TQuery components, when implem-
enting the sub-class.

Frames are a very good way of
getting user-interface reuse.
Frames are like custom compo-
nents in that you are creating a
new class with methods and prop-
erties, and the programmer using
the frame is actually creating an
instance. Being able to create
methods for a frame means they
can have complex behavior, which
makes them much more useful
than component groups. Further-
more, since the programmer is
using an instance of your frame
class, changes to the frame are
‘seen’ wherever the frame is used
throughout the application.

Frames have advantages over
custom components. Components
are pre-compiled. This means that
if a component references classes
in your application, those refer-
ences are linked when you compile
your component. If you then
change the other classes, the
Delphi compiler complains that
the time stamp of the class when it
was linked into the component no
longer matches the current time
stamp. This makes components

pretty useless for reusing
application-specific func-
tionality. Frames, on the
other hand, are treated like
any other unit in your pro-
gram: they are recompiled
as needed. This, along with
avoiding issues relating to
design-time packages, gives
frames a huge practical
advantage over custom
components.

Key Omissions
And Simplifications
The architecture is
designed to illustrate

TT ResultSetOrdersResultSetOrdersObjectObject

TDataModuleTDataModule

TTObjectBaseObjectBase

TTObjectObject BaseBaseEntityEntity

TTObjectEntityCustomerObjectEntityCustomer

TT EntityOrdersEntityOrdersObjectObject

TT ResultSetBaseResultSetBaseObjectObject

TTObjectResultSetCustomerObjectResultSetCustomer

TFormTForm

TFormBaseTFormBase

TFormEntityBaseTFormEntityBase

TFormEntityCustomerTFormEntityCustomer

TFormEntityOrdersTFormEntityOrders

TFormListBaseTFormListBase

TFormListCustomerTFormListCustomer

TFormListOrdersTFormListOrders

TFormMainTFormMain

TFrameTFrame

TFrameResultSetBaseTFrameResultSetBase

TFrameResultSetCustomerTFrameResultSetCustomer

TFrameResultSetOrdersTFrameResultSetOrders

➤ Figure 3:
The TObjectBase, TFormBase,
and TFrameResultSetBase
class hierarchy.

26 The Delphi Magazine Issue 59

concepts, not to be a turnkey solu-
tion; however, the architecture is a
good basis for an application. For
simplicity’s sake I’ve intentionally
omitted some key functionality
and made some simplifying
assumptions as described below.

To make the application robust,
try..except and try..finally
blocks should be added through-
out the code, especially in class
methods used to create objects
and when referencing programmer
implementations of abstract meth-
ods. I’ve omitted exception han-
dling in the sample application.

The application allows users to
view and edit records from the
DBDEMOS database. However, in
practice users would need to have
the ability to add records. I’m omit-
ting this functionality to avoid the
general topic of transaction han-
dling, and because of the way the
architecture identifies an object by
its class and key. The key corre-
sponds to the primary key used to
fetch data from the database.
Therefore, to create a new object
you have to somehow determine
the key to be used if the record
were saved. This is a standard (but
thorny) issue, and involves decid-
ing on how and when sequence
numbers should be issued by the
database.

The class methods used to
create and manage object
instances use class type and a key
to identify an object. The key is an
integer, which corresponds to the
primary key of the data on the
database.

There are several advantages of
using a single integer primary key

for database tables. First, many
DBAs consider it good practice.
From a Delphi programmer’s per-
spective, having a single integer
primary key means that you have
lots of opportunities for saving the
key in order to re-fetch a record.
For example, if you have a
TTreeView component that reflects
the data from several master-detail
tables, you can save each record’s
key in the TTreeNode Data property.
(You have to type cast the integer
key to be of type Pointer to store
and fetch the data.) You can then
use the key as needed to fetch
record data. Many components
have a Data property, and all have
Tag properties, either of which can
be used for this purpose.

The architecture can be modi-
fied to handle concatenated keys
by changing the parameters being
passed to the object management
methods. For example, you could
use array of const or variant
arrays to pass an arbitrary number
of key values.

The sample application uses
data-aware components. Actually,
the architecture can be used with
non-data-aware controls, but
doing so means you have to write
code to keep the user interface in
sync with the data in the business
object (for an example of doing this
see my article A Delphi Multicaster
Class from Issue 53).

In the sample application there
is a one-to-one correspondence
between the business objects and
DBDEMOS tables. That allows me to
use ‘live result set’ queries.
However, for most applications,
that won’t be the case. In a real
world application one would
typically use TQuery and TUpdateSQL
components (or TDataSetProvider

and TClientDataSet components).
See the Delphi documentation for
information on these features.

Form And
Object Management
In the architecture, programmers
are not allowed to directly run a
constructor or destructor for
TFormBase or TObjectBase classes.
Instead, class methods are used.
This is needed because the user
may ask to view a form twice. The
routine that fetches the form has
to determine whether the form
already exists. If it does, the user
goes to the existing form, if it does
not a new form is created. A similar
need exists for TObjectBase
objects.

Forms are created by calling a
class method, passing the key of
the business entity to be viewed.
For example, to view the customer
entity form for a given key the
programmer codes:

TFormEntityCustomer.FetchForm(
aKey).ShowForm;

ShowForm is an ancestor method
used to restore a minimized form
before showing it to the user.

FetchForm is a class method that
determines whether the form
already exists by calling the pri-
vate ancestor method FindForm,
and either creates the form or
returns a reference to the existing
form.

FindForm works by looping
through a TList containing a refer-
ence to all forms previously added
by FetchForm. If the form exists it
returns its reference, if it doesn’t
exist it returns NIL, see Listing 1.

Note that after creating a new
form, FetchForm runs Initialize-
Form on the new object.
InitializeForm is a virtual method
that forms are free to override. It is
run after the form is fully created
and ancestor properties
initialized. In our architecture,
InitializeForm is where the form
gets an instance of its entity object
and associates the object’s query
with the data source on the form.

Business objects are created by
passing the key of the business
entity to be viewed to a class

class function TFormBase.FetchForm(const aKey: integer): TFormBase;
begin
// "Self" in a class method referes to the class type
// See if the form already exists
Result := FindForm(Self, aKey);
if (Result = NIL) then begin
// The form doesn't exist - create it
Result := Self.PrivateCreate(Application);
// Add the newly created form to the list of all existing forms
FListForms.Add(Result);
Result.Key := aKey;
// Do special ancestor-level initializations.
Result.AncestorInitializeForm;
// Now that everything is set up in the architecture run the
// sub-classing form's implementation of InitializeForm
Result.InitializeForm;

end; // then begin
end;

➤ Listing 1. Class function
TFormBase.FetchForm.

July 2000 The Delphi Magazine 27

method. For example, to create the
customer object for a given key the
programmer codes:

TObjectEntityCustomer.
FetchReference(Self, aKey);

FetchReference is similar to
TBaseForm.FetchForm. However, in
the architecture objects are refer-
ence counted. This is needed
because any part of the user inter-
face is allowed to reference an
object. For example, the orders
form has a reference to its associ-
ated orders object. An order also
relates to a customer, so the
orders form also has a reference to
a customer object. There is a
data-aware label on the orders
form that is tied to a field on the
customer object’s query. In other
words, after opening an order
form, there are two business
objects in memory: one for the
order and one for the customer:
see Figure 4. If the associated cus-
tomer form were open then there
would be two references to the
same customer object: one refer-
ence for the order form and one for
the customer form.

The reference counting is done
with a private TList object
declared in TObjectBase. As Fetch-
Reference is run, and objects are
created, the referencing object,
passed as Self, is added to the list
of referencing objects.

The reference count is decre-
mented when the programmer
runs FreeReference(Self). When
this is run, the routine checks the
list of references and removes the
referencing object. If the reference
count goes to zero (ie, the TList
becomes empty) then the object is
destroyed, see Listing 2.

The Business
Object Class Hierarchy
I’m using the term ‘business
object’ to refer to objects which
provide entity information, such as
information on customers and
orders, as well as objects that
represent a result set. The entity
forms need a customer or orders
business object to provide the data
being shown on the form. The
frames need result set objects to

provide data being shown on the
frame’s TDBGrid.

TObjectBase contains the rou-
tines used to create and free
objects: FetchReference and Free-
Reference. TObjectBase also
includes database table-related
methods such as Save, Cancel, and
SaveAll. These could have been
placed in the TObjectEntityBase
class, since that’s where we actu-
ally need to save data. However,
leaving it in the ancestor gives us
the option of adding those opera-
tions in other sub-classes if the
need arises.

TEntityBaseObject sub-classes
from TBaseObject. All entities, such
as the customer class and order
class, sub-class from TEntityBase-
Object. In the sample application
there is no functionality added in
TEntityBaseObject; in practice you
might choose to put methods relat-
ing to fetching and saving data
here. For example, database trans-
action control statements could be
put at this level.

The concrete business entity
classes, TObjectEntityCustomer
and TObjectEntityOrders, sub-
class from TObjectEntityBase. The
architecture requires that all con-
crete entity classes override four

procedure TObjectBase.FreeReference(aReferencingObject: TComponent);
var
i: integer;
s: string;

begin
// Exit if the the programmer runs the routine after the reference has
// already been cleared.
if (Self = NIL) then exit;
// Remove the referencing object from the list of referencing objects.
// If the reference count goes to zero then destroy the object.
i := FReferencingObjectList.IndexOf(aReferencingObject);
if (i = -1) then begin
// If the referencing object isn't found at all then something is wrong.
// It's probably most appropriate to raise an excaption here, but for
// debugging purposes it may be best to just display an error message.
s := 'TObjectBase.FreeReference referencing object not found';
MessageDlg(s, mtError, [mbOK], 0);
exit;

end; // then begin
FReferencingObjectList.Delete(i);
if (FReferencingObjectList.Count = 0) then begin
// There are no references to this object. Free it up.
FinalizeObject;
PrivateClassObjectList.Remove(Self);
AbstractFinalizeObject;
// Run Destroy in the ancestor because we aren't allowing the programmer
// to run TObjectBase.Destroy
inherited Destroy;

end; // then begin
end;

➤ Listing 2: TObjectBase.FreeReference.

TFormEntityOrdersTFormEntityOrders

DataSourceOrders.DataSetDataSourceOrders.DataSet
(used for orders-related DB controls)(used for orders-related DB controls)

DataSourceCustomerDataSourceCustomer.DataSet.DataSet
(used for "hyperlink" TDbLabel)(used for "hyperlink" TDbLabel)

TTObjectEntityOrdersObjectEntityOrders

QueryOrdersQueryOrders

TTObjectEntityCustomerObjectEntityCustomer

QueryCustomerQueryCustomer

➤ Figure 4:
The runtime
relationship
between the
orders form and
the orders and
customer
objects it
references.

TTObjectResultSetOrdersObjectResultSetOrders

TDataModuleTDataModule

TTObjectBaseObjectBase

TTObjectEntityBaseObjectEntityBase

TTObjectEntityCustomerObjectEntityCustomer

TTObjectEntityOrdersObjectEntityOrders

TTObjectesultSetBaseObjectesultSetBase

TTObjectResultSetCustomerObjectResultSetCustomer

➤ Figure 5: The TObjectBase
class hierarchy.

28 The Delphi Magazine Issue 59

methods: InitializeObject, used
to do initializations, such as fetch-
ing data for the entity; Save, which
posts changes to the database;
Cancel, which cancels pending
changes; and UpdatesPending,
which returns true or false depend-
ing on whether the user has
changed the record.

Frames use the TObjectBase
sub-class TObjectResultSetBase as
the source of data being shown on
the frames’ TDBGrid. All frames-
related classes are discussed in the
section titled The Frames Class
Hierarchy later in the article.

The Form
Class Hierarchy
In this architecture, forms provide
the user interface for a business

object. The business
object contains business
rules. This means that
the forms themselves
need very little code.

Forms are created by
calling the class method
FetchForm, passing the
key for the business
object being viewed by
the form. The form
ancestor class creates
the business object
using information
provided by the
sub-classing form. The
ancestor form also frees
up the object as the form
is being destroyed.

The architecture requires that
the entity forms, TFormEntity-
Customer and TFormEntityOrders,
override two methods: Initialize-
Form, used to do initializations,
such as associating the form’s
datasource with the business
object’s query, and Business-
ObjectClass, which returns the
class type of the associated
business object.

Besides associating the form’s
data source with the business
object’s query, InitializeForm can
be used for other initializations.
For example, TFormEntityCustomer
contains a frame to show the
customer’s orders. Therefore,
TFormEntityCustomer uses
InitializeForm to initialize the
frame’s where clause before activat-
ing it, Listing 3. (See the section

titled The Frames Class Hierarchy
for information on how the frames
work.)

The orders form also needs to
do special processing in Init-
ializeForm. In this case the form
contains a ‘hyperlink’ to the asso-
ciated customer. This was imple-
mented using a TDBText
component, with the text set to
blue and underline, and the cursor
set to crHandPoint. The label refer-
ences a field from the query associ-
ated with the customer entity. This
means the orders form has two ref-
erences to a business entity: one
for the associated order and one
for the associated customer (see
Figure 4). The form ancestor man-
ages the reference to the order’s
business object, but since the ref-
erence to the customer object is
unique to the order form, it is
responsible for freeing up the
customer object reference.

For the orders entity form, we
free up the object reference in an
optional method called Final-
izeForm. FinalizeForm is run by the
architecture immediately before
destroying a form. (See Listings 4
and 5.)

The ‘hyperlink’ TDBText compo-
nent works by coding an OnClick
event handler which uses the
architecture’s form creation
method to create the customer
form for the associated key, see
Listing 6.

TTObjectEntityOrdersObjectEntityOrders

procedure InitializeObject; override;procedure InitializeObject; override;

function UpdatesPending: boolean; override;function UpdatesPending: boolean; override;
procedure Save; override;procedure Save; override;
procedure Cancel; override;procedure Cancel; override;

TTObjectEntityCustomerObjectEntityCustomer

procedure InitializeObject; override;procedure InitializeObject; override;

function UpdatesPending: boolean; override;function UpdatesPending: boolean; override;
procedure Save; override;procedure Save; override;
procedure Cancel; override;procedure Cancel; override;

TFormTForm

TFormBaseTFormBase

TFormEntityBaseTFormEntityBase

TFormEntityCustomerTFormEntityCustomer

TFormEntityOrdersTFormEntityOrders

TFormListBaseTFormListBase

TFormListCustomerTFormListCustomer

TFormListOrdersTFormListOrders

TFormMainTFormMain

➤ Figure 7: The TFormBase
class hierarchy.

➤ Figure 6:
TObjectEntityCustomer and
TObjectEntityOrders.

TFormEntityOrdersTFormEntityOrders

protected procedure InitializeForm; override;protected procedure InitializeForm; override;

protected function BusinessObjectClass: TObjectBaseClass; override;protected function BusinessObjectClass: TObjectBaseClass; override;

TFormEntityCustomerTFormEntityCustomer

protected procedure InitializeForm; override;protected procedure InitializeForm; override;

protected function BusinessObjectClass: TObjectBaseClass; override;protected function BusinessObjectClass: TObjectBaseClass; override;

➤ Figure 8: Classes
TFormEntityOrders and
TFormEntityCustomer.

30 The Delphi Magazine Issue 59

List forms do not have an associ-
ated business entity. The lists
display data via a frame (discussed
in the next section). In the case of
the sample application on the com-
panion disk, the lists are always
shown non-modally. However, I’ve
coded list ancestor methods
ShowModalPickListOKCancel and

ShowModalPickListApplyClose to
allow you to show the lists
modally, if needed. The list ances-
tor also has an OnListSelect
method to allow the calling routine
to react to the user pressing OK or
Apply. The ShowModalPickList-
OKCancel method shows the list
with OK and Cancel buttons,

pressing the OK button runs the
event handler and closes the form.
The method ShowModalPickList-
ApplyClose shows the list with
Apply and Close buttons. Pressing
Apply runs the event handler, but
does not close the form. The lists
do not provide result set filtering.
In other words, the lists show all
records from the customer.db or
orders.db tables. At the end of the
article I’ll enhance the customer
list to allow filtering on company
name.

The Frames Class Hierarchy
The architecture uses frames to
show a TDBGrid of entity records.
These frames also have a separate
‘model’ and ‘view’. In this case, the
model is provided by TObject-
ResultSetBase, and its entity-
specific versions TObjectResult-
SetCustomer and TObjectResultSet-
Orders, see Figure 5.

TObjectResultSetBase has a
RefreshResultSet method that
re-creates an SQL string using
methods provided by its
sub-classes.

The architecture requires that
the sub-classes, TObjectResult-
SetCustomer and TObjectResult-
SetOrders, implement three
methods: GetSqlSelectClause,
used to provide the select part of
the SQL statement; GetSql-
FromClause, used to provide the
from part of the SQL statement;
GetSelectedRecordKey, used to
return the key of the selected
record.

The entire implementation part
of the customer list is shown in
Listing 7.

All of our frames sub-class from
TFrameResultSetBase.

This class requires that its
sub-classes implement two key
methods. The first, GetClassOf-
FormToBeOpened, tells the ancestor
what form is to be opened when
the user chooses the popup menu
option Open. The second,
GetResultSetClass, tells the ances-
tor the class of the associated
result set object.

Like other parts of the architec-
ture, only needing to implement
these key methods makes the
sub-classing programmer’s task

procedure TFormEntityCustomer.InitializeForm;
begin
inherited;
Self.DataSourceCustomer.DataSet := CustomerObject.QueryCustomer;
FrameResultSetOrders.ResultSetObject.SqlWhereClause :=
'(CustNo = ' + IntToStr(Key) + ')';

FrameResultSetOrders.ResultSetObject.RefreshResultSet;
Caption := 'Customer ' + IntToStr(Key);

end;

➤ Listing 3: TFormEntityCustomer.InitializeForm.

procedure TFormEntityOrders.InitializeForm;
var
aCustomerKey: integer;

begin
inherited;
DataSourceOrders.DataSet := OrdersObject.QueryOrders;
aCustomerKey := OrdersObject.QueryOrders.FieldByName('CustNo').AsInteger;
FCustomerObject :=
(TObjectEntityCustomer.FetchReference(Self, aCustomerKey)
as TObjectEntityCustomer);

DataSourceCustomer.DataSet := FCustomerObject.QueryCustomer;
Self.Caption := 'Order ' + IntToStr(Key);

end;

➤ Listing 4: TFormEntityOrders.InitializeForm.

➤ Listing 5: TFormEntityOrders.FinalizeForm.

➤ Listing 6: The ‘hyperlink’ label’s OnClick event handler.

procedure TFormEntityOrders.DBText1Click(Sender: TObject);
var
aCustomerKey: integer;

begin
inherited;
aCustomerKey := OrdersObject.QueryOrders.FieldByName('CustNo').AsInteger;
TFormEntityCustomer.FetchForm(aCustomerKey).ShowForm;

end;

➤ Listing 7: The implementation part of customer result set object.

procedure TFormEntityOrders.FinalizeForm;
begin
FCustomerObject.FreeReference(Self);
inherited;

end;

implementation
{$R *.DFM}
{ TObjectResultSetCustomer }
function TObjectResultSetCustomer.GetSelectedRecordKey: integer;
begin
Result := Query.FieldByName('CustNo').AsInteger;

end;
function TObjectResultSetCustomer.GetSqlFromClause: string;
begin
Result := 'customer.db';

end;
function TObjectResultSetCustomer.GetSqlSelectClause: string;
begin
Result := '*';

end;
end.

July 2000 The Delphi Magazine 31

very easy. The entire implementa-
tion part of the customer frame is
shown in Listing 8.

Extending The Application
Class TFormEntityBase has a
TAction (and associated popup
menu item) used to save data by
running Save on the associated
business entity. One simple

enhancement is to add a ‘Show
hints’ option to the action list. This
option will be reflected in all
sub-classing forms.

The entity form ancestor has a
top-aligned tool bar and a bottom-
aligned status bar. To implement
the ‘Show hints’ option I set the
status bar’s AutoHint property to
True and added a TAction whose
OnExecute and OnUpdate event
handlers are as shown in Listing 9.

If you run the extended version
of the sample application you’ll see

that this functionality is now seen
on both entity forms. If we had put
that functionality at the TFormBase
level then the functionality would
have been seen on all forms.

Let’s say our users want to be
able to sort a result set by clicking
on a TDBGrid column title. To do
this we go to the frame ancestor,
TFrameResultSetBase, and code the
following OnTitleClick and
OnColumnMoved event handlers
(both events are run when moving
a column, which means we need
the OnColumnMoved event to set a

TTObjectResultSetBaseObjectResultSetBase

property SqlSelectClause: string; (read-only)property SqlSelectClause: string; (read-only)
property SqlFromClause: string; (read-only)property SqlFromClause: string; (read-only)
property SqlWhereClause: string;property SqlWhereClause: string;
property SqlOrderByClause: string;property SqlOrderByClause: string;

property SelectedKey: integer; (read-only)property SelectedKey: integer; (read-only)

protected function GetSqlSelectClause: string; virtual; abstract;protected function GetSqlSelectClause: string; virtual; abstract;
protected function GetSqlFromClause: string; virtual; abstract;protected function GetSqlFromClause: string; virtual; abstract;
protected function GetProtectedSqlWhereClause: string; virtual;protected function GetProtectedSqlWhereClause: string; virtual;

protected function GetSelectedRecordKey: integer; virtual; abstract;protected function GetSelectedRecordKey: integer; virtual; abstract;

public procedure RefreshResultSet;public procedure RefreshResultSet;

public function Empty: boolean;public function Empty: boolean;

TFrameTFrame

TFrameResultSetBaseTFrameResultSetBase

TFrameResultSetCustomerTFrameResultSetCustomer

TFrameResultSetOrdersTFrameResultSetOrders

TTObjectResultSetOrdersObjectResultSetOrders

TDataModuleTDataModule

TTObjectBaseObjectBase

TTObjectEntityBaseObjectEntityBase

TTObjectEntityCustomerObjectEntityCustomer

TTObjectEntityOrdersObjectEntityOrders

TTObjectesultSetBaseObjectesultSetBase

TTObjectResultSetCustomerObjectResultSetCustomer

➤ Figure 9: The
TObjectResultSetBase and
TFrame class hierarchy.

➤ Figure 10: Class TObjectResultSetBase.

32 The Delphi Magazine Issue 59

flag specifying that column sorting
not be done in that case), see
Listing 10.

This powerful functionality is
easily implemented by having the
title click event handler set

the SqlOrderByClause property for
the frame’s result set object, then
refreshing the query. If you run the
enhanced version of the sample
application you’ll see that all grids,
on the customer and orders list,

and the grid of orders on the cus-
tomer entity form, now have
column sorting.

The lists would be more useful if
they allowed the user to filter the
result set. To add this to the cus-
tomer list I’ve added a dropdown
combobox with the options con-
tains, matches exactly, and starts
with as well as an edit field for com-
pany name. I also added an
OnChange event for the edit field,
see Listing 11.

Run the extended sample, enter
a company name on the company
list, and choose Find to see how it
behaves.

Adding support for a new entity
type takes more coding. However,
since almost all the functionality is
built into the ancestor classes this
involves creating several sub-
classes, and implementing fifteen
or so program statements.

To implement support for
employee we need to sub-class
these objects: TObjectEntityBase,
TFormEntityBase, TObjectResult-
SetBase, TFrameResultSetBase and
TFormListBase.

Since these classes are based on
TDataModule, TForm, and TFrame,
Delphi lists them on the project tab
(labelled CustomerOrders in the
sample) on the New Items dialog
box. The dialog is accessed via
File | New... from Delphi’s main
menu. As we create each sub-class
we have to implement the key
methods and add a few compo-
nents, as follows.
➢ TObjectEntityEmployee: Add a

TQuery and implement four
methods (with a total of five
program statements).

➢ TFormEntityEmployee: Add the
data-aware controls and
implement three methods
(with a total of four program
statements).

➢ TobjectResultSetEmployee: Im-
plement three methods (with
a total of three program
statements).

➢ TFrameResultSetEmployee: Im-
plement two methods (with
a total of two program
statements).

➢ TFormListEmployee: Implement
one method (with a total of one
program statement).

➤ Listing 9: The OnExecute and OnUpdate event handlers.

➤ Listing 10: The OnColumnMoved and OnTitleClick event handlers.

➤ Listing 11: The OnChange event handler.

implementation
uses UnitObjectResultSetCustomer, UnitFormEntityCustomer;
{$R *.DFM}
{ TFrameResultSetCustomer }
function TFrameResultSetCustomer.GetClassOfFormToBeOpened: TFormBaseClass;
begin
Result := TFormEntityCustomer;

end;
function TFrameResultSetCustomer.GetResultSetClass: TObjectResultSetClass;
begin
Result := TObjectResultSetCustomer;

end;
end.

➤ Listing 8: The implementation part of the customer frame.

TFrameResultSetBaseTFrameResultSetBase

property ResultSetObject: TObjectResultSetBase;property ResultSetObject: TObjectResultSetBase;

protected function GetClassOfFormToBeOpened: TFormBaseClass; virtual;protected function GetClassOfFormToBeOpened: TFormBaseClass; virtual;
protected function GetResultSetClass: TObjectResultSetClass; virtual; abstract;protected function GetResultSetClass: TObjectResultSetClass; virtual; abstract;

➤ Figure 11: TFrameResultSetBase.

procedure TFormEntityBase.ActionShowHintsExecute(Sender: TObject);
begin
inherited;
Self.ShowHint := not(Self.ShowHint);

end;
procedure TFormEntityBase.ActionShowHintsUpdate(Sender: TObject);
begin
inherited;
ActionShowHints.Checked := Self.ShowHint;

end;

procedure TFrameResultSetBase.DBGridFrameResultSetBaseColumnMoved(Sender:
TObject; FromIndex, ToIndex: Integer);

begin
FMovingColumn := TRUE;

end;
procedure TFrameResultSetBase.DBGridFrameResultSetBaseTitleClick(Column:
TColumn);

begin
inherited;
if not(FMovingColumn) then begin
ResultSetObject.SqlOrderByClause := Column.Field.FieldName;
ResultSetObject.RefreshResultSet;

end;
FMovingColumn := FALSE;

end;

procedure TFormListCustomer.EditCompanyNameChange(Sender: TObject);
var s: string;
begin
inherited;
case ComboBoxCompanyName.ItemIndex of
0: s := '(company like ''%'+EditCompanyName.Text+'%'')';
1: s := '(company like '+EditCompanyName.Text+')';
2: s := '(company like '+EditCompanyName.Text+'%'')';
else // Unexpected value -- raise an exception or show an error msg.

end; // case
FrameResultSetCustomer.ResultSetObject.SqlWhereClause := s;

end;

July 2000 The Delphi Magazine 33

We need a way of getting to the list,
so we need a new TAction (and
associated menu item and tool
button) on the main form. We also
have to remove the new forms,
data module, and frame from the
auto-create list.

If you run the extended sample
application you’ll see that the new
list works like the other lists. Its
frame allows column sorting, Open
opens the entity form. On the
employee form, changes are
reflected by the Save and Save All
buttons. In other words, by
sub-classing and implementing a
handful of statements we get
full-featured employee entity
support. I did have to set a few
properties, like the query’s SQL

and RequestLive properties, but
adding this functionality was a
matter of following a simple
routine.

Conclusion
This article has illustrated how an
application architecture encapsu-
lates complexity and functionality
in ancestor classes. By doing this,
programmers extending the appli-
cation need only sub-class certain
classes and implement a few

simple methods. The result is
much higher programmer produc-
tivity, lower maintenance, and
better consistency.

Max Rahder (www.rahder.org
/max) is an independent consul-
tant living in Madison, Wisconsin.
He is a certified Delphi and
JBuilder instructor. You can email
Max at max@rahder.org

	Introduction
	Description
	Key Features
	Key Omissions And Simplifications
	Form And Object Management
	The Business Object Class Hierarchy
	The Form Class Hierarchy
	The Frames Class Hierarchy
	Extending The Application
	Conclusion

